Search results for "Dye-sensitized solar cell"

showing 10 items of 78 documents

Injection and ultrafast regeneration in dye-sensitized solar cells

2014

Injection of an electron from the excited dye molecule to the semiconductor is the initial charge separation step in dye-sensitized solar cells (DSC's). Though the dynamics of the forward injection process has been widely studied, the results reported so far are controversial, especially for complete DSC's. In this work, the electron injection in titanium dioxide (TiO2) films sensitized with ruthenium bipyridyl dyes N3 and N719 was studied both in neat solvent and in a typical iodide/triiodide (I-/I3 -) DSC electrolyte. Transient absorption (TA) spectroscopy was used to monitor both the formation of the oxidized dye and the arrival of injected electrons to the conduction band of TiO2. Emiss…

/dk/atira/pure/sustainabledevelopmentgoals/affordable_and_clean_energyta221Analytical chemistrychemistry.chemical_elementElectrolyteNanosecondPhotochemistrySurfaces Coatings and FilmsElectronic Optical and Magnetic MaterialsRutheniumDye-sensitized solar cellchemistry.chemical_compoundGeneral EnergychemistryPicosecondTitanium dioxideUltrafast laser spectroscopySDG 7 - Affordable and Clean EnergyPhysical and Theoretical ChemistryTriiodideta116
researchProduct

Modelling chemical composition in electric systems - implications to the dynamics of dye-sensitised solar cells

2010

International audience; Classical electromagnetism provides limited means to model electric generators. To extend the classical theory in this respect, additional information on microscopic processes is required. In semiconductor devices and electrochemical generators such information may be obtained by modelling chemical composition. Here we use this approach for the modelling of dye-sensitised solar cells. We simulate the steady-state current-voltage characteristics of such a cell, as well as its transient response. Dynamic simulations show optoelectronic hysteresis in these cells under transient light pulse illumination.

02 engineering and technology010402 general chemistry7. Clean energy01 natural scienceslaw.inventionOpticslawSolar cellClassical electromagnetismTransient responseInstrumentationSteady statebusiness.industryChemistrySemiconductor device021001 nanoscience & nanotechnologyCondensed Matter Physics0104 chemical sciencesElectronic Optical and Magnetic MaterialsDye-sensitized solar cellHysteresisPhysical SciencesOptoelectronicsTransient (oscillation)0210 nano-technologybusiness
researchProduct

Impact of hydroxy and octyloxy substituents of phenothiazine based dyes on the photovoltaic performance

2013

Two novel organic dyes containing hydroxy and octyloxy substituents onto a phenothiazine skeleton were synthesized and their effects on the photovoltaic performance were studied. Hydroxy acts as an ancillary anchoring unit along with the carboxylic group, while the phenothiazine modified moiety acts as an electron donor. The photophysical and electrochemical studies revealed that maximum absorbance of the dye with the hydroxy group in the solution was blue shifted and its band gap increased, indicating that donor acceptor strength was reduced as compared to the octyloxy substituted dye. Furthermore, electron lifetime of the organic dye with the hydroxy moiety was shorter due to smaller resi…

Absorbancechemistry.chemical_compoundDye-sensitized solar cellchemistryBand gapProcess Chemistry and TechnologyGeneral Chemical EngineeringPhenothiazineEnergy conversion efficiencyMoietyElectron donorPhotochemistryElectrochemistryDyes and Pigments
researchProduct

Synthesis and photovoltaic performance of dihydrodibenzoazepine-based sensitizers with additional lateral anchor

2013

Three novel metal-free organic dyes with dihydro-5H-dibenzo[b,f]azepine as a donor and cyanoacrylic acid as an anchoring unit were designed as an innovative linear skeleton of D-D-pi-A type of organic dyes. The conversion efficiency of the derived dye-sensitized solar cells is moderate. Among them, the dye with a hydroxy group as an additional anchoring moiety exhibited the highest UV-Vis absorption with a maximum molar extinction coefficient of 24,136 M-1 cm(-1) at lambda(max) = 458 nm and the best photovoltaic performance with an overall power conversion efficiency of 4.88%, while the dye with a carboxy group as an additional anchoring moiety exhibited the lowest conversion efficiency (4.…

Absorption (pharmacology)Materials scienceProcess Chemistry and TechnologyGeneral Chemical EngineeringPhotovoltaic systemEnergy conversion efficiencyAnchoringMolar absorptivityPhotochemistrychemistry.chemical_compoundDye-sensitized solar cellchemistryMoietyAzepineDyes and Pigments
researchProduct

Theoretical study on the influence of electric field direction on the photovoltaic performance of aryl amine organic dyes for dye-sensitized solar ce…

2019

It is very important to reveal the influence of different electric field directions on dye sensitizers. Thus, in this study, we investigated the electronic structures and optical properties of six designed aryl amine organic dye models under different electric fields using density functional theory (DFT) and time-dependent density functional theory (TD-DFT). Moreover, the electronic structures and optical properties of these studied dyes with different electric field in tetrahydrofuran (THF) were also calculated. The key parameters of the short-circuit current density (Jsc), including light harvesting efficiency (LHE) and intra-molecular charge transfer (ICT), are discussed in detail. With …

AnataseChemistryArylPhotovoltaic system02 engineering and technologyGeneral Chemistry010402 general chemistry021001 nanoscience & nanotechnology01 natural sciencesCatalysis0104 chemical sciencesDye-sensitized solar cellchemistry.chemical_compoundAdsorptionChemical engineeringElectric fieldMaterials ChemistryDensity functional theory0210 nano-technologyCurrent densityNew Journal of Chemistry
researchProduct

Benefits of a translucent building envelope made of DSC-integrated glass blocks

2015

The aim of this paper is to analyse the benefits deriving from the replacement of the glazed façades of an office building located in Palermo (Sicily) with a new translucent BIPV envelope made of multifunctional glass block panels integrated with Dye-sensitized Solar Cells (DSCs). The analysed 11-storey building is cladded by a curtain wall determining high management costs, especially during summer, in order to maintain indoor comfort. After the design of the building envelope and of the components for the connection of the glass block panels with existing load bearing structure, the energy performance of the building, before and after the replacement of its envelope, were analysed with th…

Building retrofitBuilding-Integrated PhotovoltaicsGlass blockBuilding-Integrated Photovoltaics Dye-sensitized solar cells Glass block Building Envelope Building retrofit SBskin. Smart Building SkinBuilding EnvelopeSettore ICAR/10 - Architettura TecnicaDye-sensitized solar cells
researchProduct

Cobalt Electrolyte/Dye Interactions in Dye-Sensitized Solar Cells: A Combined Computational and Experimental Study

2012

We report a combined experimental and computational investigation to understand the nature of the interactions between cobalt redox mediators and TiO2 surfaces sensitized by :ruthenium and organic dyes, and their impact on. the performance of the corresponding dye-sensitized solar cells (DSSCs). We : focus: on different ruthenium dyes and fully organic dyes, to understand the dramatic loss of efficiency observed for the prototype Ru(II) N719 dye in conjunction with :Cobalt: electrolytes. Both N719- and Z907-based DSSCs showed an increased lifetime in iodine-based electrolyte compared to the cobalt-based redox-shuttle; While the organic D21L6 and D25L6 cycles endowed.With long alkoxy chains,…

COLLOIDAL TIO2 FILMSinorganic chemicalsLOW QUANTUM YIELDSInorganic chemistrychemistry.chemical_element02 engineering and technologyElectrolyte010402 general chemistryPhotochemistry01 natural sciencesBiochemistryRedoxREDOX COUPLECatalysisEFFECTIVE CORE POTENTIALSDENSITY-FUNCTIONAL THEORYColloid and Surface ChemistryDENSITY-FUNCTIONAL THEORY; EFFECTIVE CORE POTENTIALS; INTRAMOLECULAR ELECTRON-TRANSFER; TRANSITION-METAL-COMPLEXES; COLLOIDAL TIO2 FILMS; LOW QUANTUM YIELDS; MOLECULAR CALCULATIONS; REDOX COUPLE; MAGNETIC-PROPERTIES; PHOTOVOLTAIC CELLSMAGNETIC-PROPERTIESPHOTOVOLTAIC CELLSLigandGeneral Chemistry021001 nanoscience & nanotechnologyMOLECULAR CALCULATIONSTRANSITION-METAL-COMPLEXES0104 chemical sciencesMarcus theoryRutheniumDye-sensitized solar cellchemistryAlkoxy groupINTRAMOLECULAR ELECTRON-TRANSFER0210 nano-technologyCobalt
researchProduct

Correction: Phenothiazine-based dyes for efficient dye-sensitized solar cells

2016

Correction for ‘Phenothiazine-based dyes for efficient dye-sensitized solar cells’ by Zu-Sheng Huang et al., J. Mater. Chem. C, 2016, 4, 2404–2426.

Chemistry02 engineering and technologyGeneral Chemistry010402 general chemistry021001 nanoscience & nanotechnologyPhotochemistry01 natural sciencesGeneralLiterature_MISCELLANEOUS0104 chemical scienceschemistry.chemical_compoundDye-sensitized solar cellPhenothiazineMaterials Chemistry0210 nano-technologyJournal of Materials Chemistry C
researchProduct

Influence of spatial arrangements of π-spacer and acceptor of phenothiazine based dyes on the performance of dye-sensitized solar cells

2013

Abstract Three phenothiazine based organic dyes PTA , PDTA and PTDA with D– π –A, π –D– π –A and A– π –D– π –A frameworks were designed and synthesized for the dye sensitized solar cells (DSSCs). Phenothiazine with octyloxyphenyl moiety acts as donor while thiophene and cyanoacetic acid units act as a π -spacer and an acceptor, respectively. The effects of the molecular structures of the dyes on the performance of the DSSCs were investigated systematically along with their photophysical and photoelectrochemical properties. The dye PTDA with A– π –D– π –A framework exhibited a better light harvesting capacity and an effective electron extraction pathway from the electron donor to the TiO 2 s…

ChemistryElectron donorGeneral ChemistryCondensed Matter PhysicsPhotochemistryAcceptorElectronic Optical and Magnetic MaterialsBiomaterialschemistry.chemical_compoundDye-sensitized solar cellCyanoacetic acidPhenothiazineOrganic dyeMaterials ChemistryThiopheneMoietyElectrical and Electronic EngineeringOrganic Electronics
researchProduct

Photoinduced ultrafast dynamics of Ru(dcbpy)2(NCS)2-sensitized nanocrystalline TiO2 films:The influence of sample preparation and experimental condit…

2004

In most of the previous ultrafast electron injection studies of Ru(dcbpy)2(NCS)2-sensitized nanocrystalline TiO2 films, experimental conditions and sample preparation have been different from study to study and no studies of how the differences affect the observed dynamics have been reported. In the present paper, we have investigated the influence of such modifications. Pump photon density, environment of the sensitized film (solvent and air), and parameters of the film preparation (crystallinity and quality of the film) were varied in a systematic way and the obtained dynamics were compared to that of a well-defined reference sample:  Ru(dcbpy)2(NCS)2−TiO2 in acetonitrile. In some cases, …

ChemistryKineticsAnalytical chemistrysolar energyelectron transferNanocrystalline materialSurfaces Coatings and FilmsSolventDye-sensitized solar cellElectron transferCrystallinitychemistry.chemical_compounddye-sensitized solar cellsolar cellsMaterials Chemistryelectron injectionSample preparationPhysical and Theoretical ChemistryAcetonitrile
researchProduct